Below all subsets for Minimal Connected Dominating Set
نویسندگان
چکیده
A vertex subset S in a graph G is a dominating set if every vertex not contained in S has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced by S is connected. A connected dominating set S is a minimal connected dominating set if no proper subset of S is also a connected dominating set. We prove that there exists a constant ǫ > 10 such that every graph G on n vertices has at most O(2) minimal connected dominating sets. For the same ǫ we also give an algorithm with running time 2 · n to enumerate all minimal connected dominating sets in an input graph G.
منابع مشابه
Enumerating Minimal Connected Dominating Sets in Graphs of Bounded Chordality
Listing, generating or enumerating objects of specified type is one of the principal tasks in algorithmics. In graph algorithms one often enumerates vertex subsets satisfying a certain property. We study the enumeration of all minimal connected dominating sets of an input graph from various graph classes of bounded chordality. We establish enumeration algorithms as well as lower and upper bound...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملOn Hop Roman Domination in Trees
Let $G=(V,E)$ be a graph. A subset $Ssubset V$ is a hop dominating setif every vertex outside $S$ is at distance two from a vertex of$S$. A hop dominating set $S$ which induces a connected subgraph is called a connected hop dominating set of $G$. Theconnected hop domination number of $G$, $ gamma_{ch}(G)$, is the minimum cardinality of a connected hopdominating set of $G$...
متن کاملOn graphs with equal total domination and connected domination numbers
A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total domination number γt (G) of G is the minimum cardinality taken over all total dominating sets of G. A dominating set is called a connected dominating set if the induced subgraph 〈S〉 is connected. The connected domination number γc(G) of G is the minimum cardinality taken over all min...
متن کاملOn minimal geodetic domination in graphs
Let G be a connected graph. For two vertices u and v in G, a u–v geodesic is any shortest path joining u and v. The closed geodetic interval IG[u, v] consists of all vertices of G lying on any u–v geodesic. For S ⊆ V (G), S is a geodetic set in G if ⋃ u,v∈S IG[u, v] = V (G). Vertices u and v of G are neighbors if u and v are adjacent. The closed neighborhood NG[v] of vertex v consists of v and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.00840 شماره
صفحات -
تاریخ انتشار 2016